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Perhaps the most difficult curve to desmear is the 
curve generated by a sphere of uniform electron den- 
sity. The curve consists of a series of maxima and 
minima with the intensity rising and falling by many 
factors of ten in small intervals of h. The curve shown 
in Fig.3 was smeared, and later desmeared, using a 
Gaussian height weighting function which fell to 1/e 
at _+0.30/~-t and neglecting the width corrections. 
Since 0.30 A -1 encompassed two secondary peaks this 
was felt to correspond as closely as was practical to 
infinite slit height smearing. The results are shown in 
Fig. 3. The differences between I0 and I4T are less than 
one per cent at the points near the peaks but still 
almost five hundred per cent at the calculated points 
near the local minima. Nevert.heless, the differences 
would be barely observable experimentally, if at all. 
If we smeared and desmeared this same sphere scat- 
tering function using a height weighting function which 
fell to 1/e at + 0.075 A -I then the errors at all calcu- 
lated points, including the local minima, were less than 
one per cent after four iterations. 

It should be noted that this method is not limited 
to solving the small-angle X-ray collimation equation. 
The author first derived it in order to correct the X-ray 
scattering curves for the effect of non-monochromati- 
city of the incident beam. Ergun (1966) has independ- 
ently used equation (2) to unfold the convolution equa- 
tion. Provided that a unique solution exists, it seems 
that the method can be applied to the solution of any 
integral equation of the form 

Io[f(Yx,Y2, . . . , yn ,  x)]dyldy2 . . . dyn 

where W is the appropriate weighting function and f 
is a function o fy l , y2 ,  • • • ,Yn and x. One such equation 
which might be of interest is the general (i.e. sin 0 is 
not necessarily equal to 0) X-ray slit-smearing equa- 
tion. 

Programs can be made available on request by 
writing to Dr W.W. Beeman, Biophysics Laboratory, 
University of Wisconsin, Madison, Wisconsin. 

The author would like to express his thanks to 
Professors Anderegg and Beeman for their helpful dis- 
cussions and encouragement. 
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Design Principles of X-ray Diffraction Cameras Linear in f(0) 
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The problem of designing an X-ray diffraction camera linear in an arbitrary function f(O) of the Bragg 
angle is considered. While a general solution determining the shape has not been found, the complete 
solution for f =  kO is known, and particular solutions for f =  k sin 0 and f =  k sin20 are given. The shape 
of a camera linear, along the equatorial plane, in sin 0 is an upright cardioid cylinder with the specimen 
at the cusp. For f =  k sinZ0 no analytic solution has been found, but perturbation and numerical methods 
have yielded one particular shape satisfying the condition. The practical feasibility of the cameras is 
discussed. 

In conventional X-ray powder diffraction cameras the 
specimen is situated at the centre or on the circum- 
ference of a circular cylinder formed by the film. The 
primary beam strikes the specimen at a right angle to 

the cylinder axis or to a line parallel with it. The recti- 
fied length of an arc in the equatorial plane is propor- 
tional to 20 when the specimen is at the centre (Debye- 
Scherrer geometry), or to 40 when the specimen is on 
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the circumference (focusing geometry; the focusing 
effect will not be considered here). The cameras may 
thus be said to be linear in 0. In the following we shall 
consider the more general problem of cylindrical cam- 
eras linear in other functions of the Bragg angle, such 
as sin 0 and sinZ0, to see what special advantages might 
be gained over cameras of conventional design. 

The condition of linearity in f(O), when expressed 
in polar coordinates, is given by 

~0 

I [FZ(~)-F F'2(q~)]*d~o=f(~o/2), 

o (O=~o/2;f(O)=O) (1) 

where F(~a) determines the shape of the normal cross- 
section of the camera; the specimen is located at the 
origin and assumed to behave like a point scatterer. 
Differentiating and squaring leads to a quadratic first- 
order differential equation 

F2(9) + F'2(~0) =f'2(9/2 ) . (2) 

The solution of this equation for a general function 
f(~0) does not appear to be known, even when f(rp) is 
a positive monotonic increasing function, as required by 
the physical nature of the problem. The successive sub- 
stitutions F=f(~0). sin u(~0), z = t a n u  suggested by 
Kamke (1961) lead to Abel's differential equation 

dz/d~o= ~ 1 + h(~o)z -T- z 2 + h(~0)z 3, h(~0)=f'(~o)/f(~o), 

which again is an equation with apparently no known 
solution. 

However, for the special functions (1)f(~0/2)=k~0/2; 
(2) k sin (¢p/2); and (3) k sin2(~0/2) the right-hand side 
of equation (2) becomes respectively (1) k2/4; (2) 
(k2/8)(1 +cos ~0); and (3) (k2/4)sin2~0, and for some of 
these cases particular solutions can be found. The num- 
ber of solutions for a given f will depend on the con- 
tinuity assumptions regarding F and F' .  If F is assumed 
continuous, then, for any cp, F ' =  + (f'2-F2)+. If the 
condition of continuity is imposed on both F and F '  
in some range including a boundary condition, there 
will be a unique solution for F in that range. 

Case 1 

The general solution of the equation F2-FF'2=k2/4 is 

F =  + (k/Z){[(1 - C2)/(1 + C2)] sin fp 
+[2C/(1 +C2)] cos ~0}. (3) 

For C=cos  ~0/(1 +sin ~0), F =  +k/2,  which is the polar 
equation of a circle of radius k/2 with centre at the 
origin. This corresponds to the standard Debye-Scher- 
rer geometry, with normal incidence of the diffracted 
beam on the film for any ~0 in the equatorial plane 
(Fig. l). 

For fixed values of C, 

F =  + (k/2)(a sin ~0+ b cos cp)= + (k/2) cos(tp-fl) ,  

where a = (1 - C2)/(1 + C 2) = sin fl and b = 2C/(1 + C 2) = 
cos ft. For special choices of C one has 

C =  0 F =  + (k/2) sin ~0 
C = 1 F =  + (k/2) cos cp 

C =  + 1/2-1 F =  + (k/2)[( + 1/2- 1)/(-T- 1/2 + 2)](sin ~0 
+ cos ~0). 

Solutions of this type represent circles passing through 
the origin, with their centres displaced from ~0=0 by 
rotation through fl (Fig. 2). These cases correspond to 
cylindrical (focusing) cameras with the specimen at the 
origin, i.e. on the circumference of the camera. Normal 
incidence of the diffracted beam on the film in the 
equatorial plane* is obtained only for values of ~0 
which correspond to F(~0)=max., i.e. for 9=ft.  With 
C = 0  only the middle range of 0 is recorded; with 
C =  1, only low or high 0. For other values of C the 
recorded 0 range varies depending on the particular 
choice of C. The angle of incidence in certain ranges 
of 0 is very oblique and tends to zero as a limit. 

The diffraction maxima appear at the intersections 
of the diffraction cones z2= r2(tanZc~ c0s2(0 - sin2~o) (cy- 
lindrical coordinates; equation of the cone axis, tp = 0; 

= 20 = angle between the cone axis and the generating 
line passing through the origin) with the cylindrical 
film surfaces, r(~o)= F(~o)" 

z 2 = FZ(~o)(tan2e cos2~o - sin2cp). 

For F =  + k/2, ~o=arc cos{ + [(422/k2)-F 1]/(tan2e + 1)}. 
Correspondingly more complicated expressions for 
~0(z, ct) are obtained for the other solutions. The shapes 
of the lines of intersection as they appear on the un- 
rolled film are shown, at 5 °0 intervals, for five typical 
cases in Fig.2. The back-reflection patterns (/1> 90 °) 
are mirror images of the front-reflection patterns. 

* Circular cylindrical coordinates, z=0. 
t For an intensity scan in the equatorial plane using an 

infinitesimal aperture. 

!o ,o/,o, 
0 ~  

s .~o ---e=o. 
Fig. 1. Case 1, F=k/2: Debye-Scherrer geometry. Powder diffraction lines are shown at 5°0 intervals. Broken line: the F-2 

intensity factor. 
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Because the specimen-to-film distance in the pe- 
ripheral mounting is not constant, an additional inten- 
sity factor F-2(~0) appears]'. As a consequence, inten- 
sities in the equatorial plane will be greatly increased 
as the diffracted-beam vector approaches the tangent 
which passes through the origin. 

There are no other geometries linear in 0. 

Case 2 

One class of solution of the equation F 2 + F ' 2 =  
(k2/8)(1 +cos  ~0)is of the type F =  _+ (k/4)[1 + cos(~0-fl)]. 
The curve represented by F is a cardioid rotated 
through an angle fl from ~0 = 0, whose total length is 
12k[cos(fl/2) + sin(fl/2)]]. 

The only case of interest here is for f l=0  (Fig.3). 
Normal incidence in the equatorial plane obtains only 
at ~0 = 0, but as this corresponds to ~ = 0, normal inci- 
dence exists only at one point, viz. ~o=0, z=0 .  The 

shape of the lines of intersection of the diffraction cones 
with the surface of the cardioid cylinder is determined 
by the equation 

x 4 + 2x 3 + x 2 sinZ~- 2x cos2~- [1 + (4z2/k2)] cos2~ = 0 ,  

where x = cos ~0 (Fig. 3). 
Since the line ~0 = 0 is a tangent at the cusp, the dif- 

fraction lines are compressed in such a way that crowd- 
ing occurs at high Bragg angles and the incidence in 
this angular range is increasingly more oblique. The 
intensity factor F -2 increases with increasing 0. 

More generally, when f(O) is a trigonometric func- 
tion particular solutions of equation (1) may be ob- 
tained by a heuristic method which ultimately depends 
on finding an integrating factor. When equation (1) is 
written in the form 

( r '  + i F ) ( V ' -  iF) =fe t¢ . f e  -t¢ , (4) 

where ~ = ((~0) is a function to be determined, real solu- 

o 

o 

\!o Ij 

o 
So ~ = 0 =  0 ° 

\ 30 12 i!oi 

0 0=0" 

0 0 8=0" 

Fig.2. Case 1, F=(k/2) cos (tp-fl) (focusing geometry): Effect of fl on the shape and symmetry of the powder diffraction lines. 
Broken lines: the F-2 intensity factors. 
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tions of the equation F ' +  iF=fe  t¢ can be studied. This 
procedure is of no assistance in finding a general solu- 
tion, since use of an integrating factor to solve the last- 
named equation does not lead to a useful integral equa- 
tion, but many curves can be found for which the func- 
tion ~(~0) is very simple. An example is the cardioid 
discussed above, for which tan ~(~0)= - f / 2 f ' .  Another 
example, not of interest in the present connection, is 
the n-leaved rose, F =  a cos n~0, for which tan ~(~0)= 
(ff,)/nZ(a z _ f z ) .  

Case 3 

No analytic solution of the equation 

F 2 + F ' 2  = (k2/4) sin2~0 (5) 
has been found. However, an idea of the nature of 
possible solutions in the real domain is gained by con- 
sidering that F2(0)+ F'2(0)= 0. Since F and F '  must be 
real functions of fp, the boundary conditions are F(0)= 0 
and F ' (0)=0.  Two special solutions to equation (5) 
are sought. In the first (case 3A), F is continuous in the 
range 0<~0<n and F '  is continuous except at n/2, 
where F'(n/2 + e) = - F ' ( n / 2 -  ~). In the second (case 
3B), F is continuous as in 3A and F '  is continuous in 
some range 0~(,0_<(,01im. In case 3B F will increase 
monotonically until F '  becomes zero at ~0um; for 
~0 > (/)llm F '  becomes imaginary. The two solutions in 
F will coincide in the range 0 < fp < n/2. 

50* 
40* 

50" 

)o 

I0 "  

8 = 0 *  

0 0 - " - "  

/ 
! 

0 / 

Fig. 3. Case 2, F =  (k/4)(1 + cos tp): Camera  linear in sin 0. 

In the following perturbation method, and in the 
numerical integration method, both F and F '  were as- 
sumed countinous. 

Equation (5) may be written as F '2 + A F  2 = (k2/4) sin2~o, 
o o  

where F =  X F~A~'. This leads to the following ident- 
o 

ity in like powers of A: 

X (F~F'~ + AF~oFq)A~'+a=(k2/4) sin2tp 
v'q p , q = 0 , 1 , 2 . . . o o .  (6) 

This identity must hold for all values of A including 
A = 1. Hence equating the coefficients of A °, A a, A z etc. 
successively yields 

17o2 = (k2/4) sin2q9 

2FoF" ~ + F2=0  

2FoF'2 + F'~ 2 + 2FoFx = 0 

2FoF'~+. . .  = 0 .  (7) 

The formal solution F--  ~ F~, where all Fao(0)= 0 and 
o 

F~(0) = 0, is obtained by setting A = 1. 
Solving equations (7), which are linear and of order 

one, for n > 0 yields 

(2/k)Fo= 2 sin2(~o/2) 
(2/k)Fl=sin2(qg/2) - 2 In sec(~0/2) 
(2/k)F2=¼ sin2(~0/2)- 4 z tan2(~0/2) 

- In sec(fp/2) + 2[ln sec(~0/2)] 2 etc. 

Since for n > 2 the terms of the perturbation solution 
become excessively complicated, the formal solution 

o o  

F =  X F~ has been truncated to Ftrune = F0 + Fa + F2 = 
o 

F -  E, where E is the truncation error. Direct numerical 
integration of equation (5) yields a solution which is 
in close agreement with F - E ,  thus confirming the per- 
turbation solution; F '  becomes imaginary for ~o greater 
than ~0mn-1-88 rad, i.e. ca. 108 °. The following values 
of the relative error ElF are determined by comparing 
Ftrune with F found by numerical integration: 

~0um --- 1"88 rad E l F =  6 x 10 .3 
~o = 1"5 E l F =  5 × 10 -4 
~p = 1"0 E l F =  4 x 10 -5 
~o=0"5 E / F =  1 x 10 .6 ; 

thus the truncated function approximates quite closely 
the solution required. 

The curve represented by the function F - E  for 
0 < ~o < + n/2 is shown in Fig. 4. In this range of ~0, F 
is common to cases 3A and 3B. For ~p> +n/2  the 
choice is between maximum ~0 coverage and absence 
of discontinuity in F ' .  In the first alternative (case 3A) 
the entire range 0 < tp < _+ n is made accessible by re- 
flecting the solution for 0 _< ~0 < + n/2 in a mirror plane 
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passing through ~0= + n/2. This solution, which is of 
symmetry mm and has discontinuities at + n/2, corre- 
sponds to the complete curve of Fig. 4. In the second 
alternative (case 3B) the curve is continued smoothly 
past + n/2 until it reaches + ~01im. The overall sym- 
metry of the complete solution is m, the mirror plane 
passing through ~0=0. The shape of the curve can be 
easily visualized by continuing the curve of Fig. 4 from 

= + n/2 to about 108 o; the lines of intersection of the 
diffraction cones with the corresponding cylindrical 
surface in the range of ~0 between + n/2 and + (/)lira 
do not differ greatly from those shown in Fig. 4, except 
that they are flatter and not symmetrical with respect 
to the 0=45  ° line, and the vertical cut-off line is at 
ca 54°0. The F -2 curve decreases steadily past the 
0=45  ° value. 

The general case 

The foregoing analysis is restricted by the initial as- 
sumption that the primary X-ray beam So is perpen- 
dicular to the axis of the generalized right cylinder 
formed by the film, and that the film is to be measured 
along the trace of the equatorial plane in the cylinder 
surface. If these conditions are relaxed, additional con- 
figurations linear in f(O) arise.* Some configurations 
would be generalized cylindrical and conical film sur- 
faces inclined at an arbitrary angle to So. To achieve 
linearity in a specified function f(O) the arc length 
could be measured, on the unrolled film, along lines 
other than the intersections of the equatorial plane 
with such surfaces. The lines could be straight or 
curved. No attempt will be made here to treat the 
general case (of which cases 1-3 are special instances), 
but some simple geometries suggest themselves im- 
mediately. 

Let us assume that the arc length is measured along 
a straight line on the unrolled film, and that So is always 
in q~ = 0. The straight line can be a generating line of 
a cylinder or a cone and intersect So at an acute angle 

at a distance R from the specimen. Examples would 
be (a) a cylinder whose axis intersects So at ~ #  0; (b) 
a cone with an apical half-angle c~/2, one of whose 
generating lines coincides with So; (c) a cone with an 
apical half-angle ~ and the axis in So; and (d) a cylinder 
with its axis coinciding or parallel with So. 

In (a) to (c), the arc length, as measured from the 
point of intersection of the surface with So, is given by 
R/(cos ~t-sin c~ cot ~p)=(R sin ~)/sin(~-~p) for the 
front-reflection, and by [R s in (n -  ~p)]/sin(~ + n -  ~p) for 
the back-reflection case (observe sign of q~). For the 
purpose of measuring the arc length along such straight 
lines these (and similar) configurations can be reduced 
to a plane containing the straight line as a normal pro- 
jection of So, inclined ~o to So (oblique Laue geometry). 
Normal Laue geometry results when ~ = 90 °, in which 

* The authors are indebted to the referee for pointing out 
the desirability of extending the original treatment of the 
problem to include these cases. 

case the expression for the arc length reduces to 
R/cot ~p = R tan 20, and the measurement can be taken 
along any radius on the Laue plate. 

In (d), c~ = 0 and R-+c~, so that the arc length must 
be measured from the point of intersection of the 
0=45  ° diffraction cone with the generating line most 
distant from So. When the axis of the cylinder coincides 
with So, this can be any generating line. The arc length 
so measured is then + R cot q~, where R is the shortest 
specimen-to-film distance. 

When the arc length is to be measured along lines 
other than rectilinear normal projections of So on the 
film surfaces, a detailed investigation of the rectifica- 
tion properties of suitable spatial curves, and of sur- 
faces containing such curves, would be required to find 
experimental arrangements that would give linearity in 
specified functions f(O). This by itself might be an 
interesting problem in solid metric geometry. 

Practical  considerations (cases 1-3) 

There is no difficulty in realizing the physical surfaces 
required in cases 1-3. Accurate machining of the cir- 

50* 

60* 
\ 

7 

80* 

40* 

~ lO o 

~) 0 = 0 ° 
i 

/ 

0---,-- 

Fig.4. Case 3: Camera linear in sin2 0. 

0 
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cular cylinders of case 1 is a trivial, if delicate, opera- 
tion. The cardioid cylinder and the surfaces required 
in case 3 can be machined with any desired accuracy 
by using a computer-controlled tool. 

Accurate positioning of the specimen holder presents 
a more difficult problem, as do the actual design of 
the collimator system and the termination of the ma- 
chined surfaces near the specimen holder in those cases 
where the specimen is located on the periphery. Some 
of these problems and their remedies are familiar from 
conventional Debye-Scherrer and focusing cameras. 
In case 1, when f i e 0  or 90 °, a Straumanis-type film 
mounting is possible in principle. 

In most of the cases considered, the oblique incidence 
of the diffracted beam, which increases the line width, 
imposes a severe practical limitation on the available 
range of 0. To minimize the increase in line width the 
use of single-coated film is imperative. In case 3 in 
particular, where there is no normal incidence, the line 
broadening could be prohibitive. On the other hand, 
in each case there is a 0 range where resolution is high, 
and this might make some of the cameras attractive 
for special purposes. The possibility of direct indexing 
which exists with cameras linear in sin 0 and sin20 
might offset the disadvantages arising from oblique 
incidence. 

In contrast to a Debye-Scherrer camera the separa- 
tion of the cq-c~2 doublets in cases 2 and 3 increases 
linearly: ds/d2 varies as s/2 in case 2, and as 2s/2 in 
case 3 (s = length of arc in the equatorial plane). Typical 
values of the separation, in mm, for Cu Ke and a film 
length of 180 mm (0-90°0) would be: 

0 Debye-Scherrer Case 2 
30 ° 0.170 0.234 
45 ° 0.292 0.331 
85 ° 4.25 0.466 

Case 3A Case 3B 
0.234 0.234 
0.467 0.467 
0.926 

The slower increase of the separation with 0 would 
tend to make the line crowding at high 0 in case 2 
and 3A less confusing, but it is doubtful whether 
a satisfactory resolution of the doublets could be 
achieved in 0 ranges with pronounced oblique inci- 
dence, except perhaps with thin specimens giving very 
sharp lines. 

Another obstacle to the practical use of non-con- 
ventional camera shapes is the coincidence of the ad- 
ditional intensity factor F -2 with the usual combined 
angular factor (Lorentz-polarization etc.) in those 
cases where the values of these factors separately tend, 
for 0 approaching 0 and 90 °, to increase beyond all 
bounds, thereby increasing the line intensities out 
of all proportion. Only in case 1, f l=0,  is there 
a compensation of the two factors, and in case 
2 the two factors counteract each other in the low 0 
range. 

The discontinuity at 0 = 45 o and the location of the 
specimen at the origin would make it difficult to ac- 
comodate film in a camera based on case 3A. How- 

ever, the angular resolution is highest precisely in the 
45 °0 range, which may slightly offset the disadvantage 
of using separate film halves. These difficulties do not 
arise in case 3B, but the accessible range of 0 ends at 
ca 54 °. This limitation could be overcome by making 
the camera reversible. Front-reflection and back-re- 
flection photographs of a specimen could be taken 
simply by rotating the camera through 180 °. The 9° 
overlap on each side of 0=45  ° would facilitate corre- 
lation of the two photographs. 

Summary 

The properties of the cameras discussed in this paper 
can be summarized as follows. 

Case 1 (Debye-Scherrer): Circular cylinder, speci- 
men on cylinder axis (Fig. 1). Normal incidence of the 
diffracted beam obtains everywhere in the equatorial 
plane. Doublet separation increases non-linearly with 
0. F -2 factor is constant. 

Case 1 (focusing): Circular cylinder, specimen on 
periphery (Fig.2). Normal incidence only at O=fl/2. 
When f l=0  the F -2 factor counteracts the combined 
angular factor. Only one half of the total 0 range is 
accessible when f l=0.  For f l=90 ° the geometrical 
coverage is from 0 = 0 to 90 °, but the practical coverage 
is less. F -2 factor depends strongly on 0. 

Case 2 (linear in sin 0): Cardioid cylinder, specimen 
at the cusp (Fig.3). Normal incidence only at 0=0 .  
Severe line crowding at high 0. High 0 not accessible 
because of specimen holder. Maximum resolution at 
low 0. F -2 factor counteracts the combined angular 
factor at low 0. Doublet separation increases linearly 
with arc length, i.e. with sin 0. 

Case 3A (linear in sin20): Cylinder of a special cross- 
section, specimen at the origin, discontinuity at 0 = 45 o 
(Fig. 4). No normal incidence. Severe line crowding at 
low and high 0. Very low and very high 0 not accessible 
because of specimen holder. Maximum resolution at 
0=45  °. F -2 factor reinforces the combined angular 
factor. Doublet separation increases linearly with arc 
length, i.e. with sin20. Film would have to consist of 
two symmetrical sections, each covering one half of 
the total 0 range. 

Case 3B (linear in sin20): Similar to case 3A but no 
discontinuity at 0=45  o. The cylindrical surface termi- 
nates at 0rim = ea 54 o. No normal incidence. Maximum 
resolution at 0rim. The full 0 range can be made acces- 
sible by reversing the camera and taking a back-reflec- 
tion photograph. 

General case: The simple geometries discussed above 
are reducible to oblique or normal Laue cases. They 
would be experimentally convenient, but they do not 
yield arc length linear in functions of 0 that can be 
related to the Bragg equation in a useful manner. 

The Debye-Scherrer geometry is, by virtue of its 
symmetry, the simplest and most practical basis for 
the construction of an X-ray diffraction camera. Any 
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departure from this geometry complicates the execu- 
tion and operation of the camera, so that an unconven- 
tional camera design can be justified only by the special 
advantages it offers. Cameras linear in sin 0 or sin20 
have the important advantage of making possible, at 
least in principle, indexing by inspection, but this 
advantage is gained at the expense of simplicity of de- 
sign and is counteracted by certain unfavourable fac- 
tors. In circumstances where the Debye-Scherrer cam- 
era is not completely satisfactory the non-standard 

camera could be a desirable alternative. However, one 
should always consider the desirable special features 
of non-standard cameras in conjunction with the ex- 
tent of normal incidence, film utilization and coverage, 
the F -2 factor, and the extent and location of the range 
of maximum resolution in 0. 
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The intensity of X-rays diffracted by a disordered structure in which identical layers are connected by 
three different translation vectors has been calculated as a function of the reciprocal vector s. The 
relative positions of two neighbouring layers have been supposed to exert a probabilistic influence 
upon the position of a third vector (s = 2). The resulting formula may be applied to cases in which the 
vectors point lzerlzendicular to the layers, as well as when the vectors have non-zero components parallel 
to the layers themselves. Intensity fields have been calculated and discussed for structural models re- 
lated to some three-component mixed layer clay minerals. The results show that the third-component 
effect begins to be detectable only when the corresponding percentage is about 15-20 %, and that it is 
more evident the greater the alternation of the various interlayer vectors amongst themselves. 

1. Introduction 

In the study of several layer-type structures affected 
by monodimensional disorder, it is generally assumed, 
and often proved, that only two main interlayer (or 
translation) vectors are present in the stacking. 

There are some cases, however, for which three dif- 
ferent vectors must be taken into account: here, we 
wish to recall particularly the three-component inter- 
stratified clay minerals which are rather widely dis- 
tributed in sedimentary rocks (Weawer, 1956; Jonas & 
Brown, 1959; MacEwan, Ruiz Amil & Brown, 1961). 
In other cases, when the interpretation of the X-ray 
diffracted intensity is not completely satisfied by models 
of structures built up by two vectors only, the presence 
of a third interlayer vector should be considered at 
least as probable. 

Owing to the lack of an adequate development of 
theoretical calculations, the effect of a third translation 
vector, besides the main two, on the X-ray intensity 
distribution has until now not been investigated to any 
extent. 

A general theory recently developed by one of the 
authors (Allegra, 1961, 1964) seems to be particularly 
suitable for this purpose. In fact, it differs from other 
general treatments (Wilson, 1942; Hendricks & Teller, 
1942; Jagodzinski, 1949a, b; Kakinoki & Komura,  
1954a, b) in the sense that the physico-mathematical 
description of a layered disordered structure is given 
in terms of the statistical succession of the interlayer 
vectors, instead of their positions in space with refer- 
ence to a fixed frame. Starting from the general results 
of the matrix formulation of this theory, some calcula- 
tions have been carried out in order to establish a for- 
mula suitable for direct numerical computation, which 
allows the above mentioned effect to be explored. In 
particular, in the present paper, the general problem 
of a monodimensionally disordered structure, consti- 
tuted by a large number of parallel layers with the same 
internal structure (i.e. with the same layer form factor) 
connected by three different translation vectors, has 
been investigated. Furthermore, the relative positions 
of two adjacent layers have been assumed to exert a 
probabilistic influence on the relative position of the 


